Predicting polymeric crystal structures by evolutionary algorithms.
نویسندگان
چکیده
The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.
منابع مشابه
OPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
متن کاملPredicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.
We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show...
متن کاملDetection of Polymer Brushes developed via Single Crystal Growth
Single crystals consisting various surface morphologies and epitaxial structures were applied to investigate the effect of other phase regions in the vicinity of a given tethered chains-covered area having a certain molecular weight of amorphous brushes. The designed experiments demonstrated that regardless of the type of surface morphology (patterned and especial mixed-brushes, homo and co...
متن کاملPredicting Polymeric Crystal Structures by Evolutionary Algorithmsa)
Qiang Zhu,1, b) Vinit Sharma,2, c) Artem R. Oganov,1, 3, 4 and Rampi Ramprasad2 Department of Geosciences, Stony Brook University, Center for Materials by Design, Institute for Advanced Computational Science, Stony Brook University, NY 11794, USA Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, 06626, CT, USA Department of Problems of Physics...
متن کاملSpongy Diamond
Rhombellanes are mathematical structures existing in various environments, in crystal or quasicrystal networks, or even in their homeomorphs, further possible becoming real molecules. Rhombellanes originate in the K2.3 complete bipartite graph, a tile found in the linear polymeric staffanes. In close analogy, a rod-like polymer derived from hexahydroxy-cyclohexane was imagined. Further, the ide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 141 15 شماره
صفحات -
تاریخ انتشار 2014